

METASTASI OSSEE DA TUMORE POLMONARE: UNA SEDE METASTATICA TROPPO POCO ENFATIZZATA

Responsabili Scientifici: Alessandro Del Conte e Gaetano Lanzetta

21 giugno 2021

Il carcinoma polmonare con lesioni scheletriche nell'era della target therapy

Elisa Roca MD, PhD Oncologia Toracica – Lung Unit Ospedale Pederzoli (Peschiera d/G – VR)

AGENDA

- Introduction
- The era of target therapy
- Future in the era of target therapy
- The real life in the era of target therapy
- Take of message

INTRODUCTION

Bone metastases in NSCLC

- NSCLC bone M+ median OS is <6 months and 5 years OS rate is <5%
- NSCLC = third most common cause of bone metastases (I:breast, II:prostate cancer)
- Incidence of bone metastasis in NSCLC
 - 30–40% during the clinical course
 - 60% at the time of diagnosis
- Presence of bone metastases \rightarrow poor prognosis
- Bone metastases have a greater negative impact on the OS and the QoL

Rosen, Cancer. (2004). Price, N., Clin Lung Cancer. (2004)

Kosteva, J. Lung Cancer. (2004) Coleman, Cancer. (1997) Weinfurt, K. P. Ann Oncol. (2005) Lipton, A. Cancer. (2000). Torre LA, et al; *CA a cancer J Clin*. (2015) Yu JL, **et al**; *Oncologist*. (@)!!)

INTRODUCTION

The process of bone metastasis in lung cancer

Transl Lung Cancer Res 2021

Bone metastases in NSCLC

	Reference	Total number of patients	BM+ at dia	gnosis	ADK BM+	Squamo BM+	Treatment of NSCLC	Tre	atment of BM		PFS	OS		
	Rosen, 2003	280	280 (100)%)	nd	nd	nd	Bij	phosphonates		nd	6.7 vs 6.1 (zolec acid vs place	dronic bo)	
							CT TV	т				15 1 vs 8 1 (natier	nts BM- 15	.5 vs 9.0 vs 3.2
Hendriks, 2014	186	64 (3	4,4%)	1	.62	nd	(119 vs 48	3)	nd			nd	(EGF	R+ vs KRAS+ vs WT)
	Murakami , 2014	100	100 (100)%)	77	12	Docetaxel (after one or two prior line of CT)	Zo	ledronic acid	2.7 (docetaxe acid vs	vs 2.6 el+zoledronic docetaxel)	10.4 vs 9.7 (docetaxel+zoled acid vs doceta	dronic (xel)	
Huang , 2015	114	62 (54	4,4%)	(62	0	TKI		Biphosph	onates	15.0 (TKI+biph T	vs 7.3 osponates vs KD	(TKI-	25.2 vs 10.4 biphosponates vs
<u>.</u>	KIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2020	3342		0094	4030	IIU		ng		1	KI)		IKI)
	Huang , 2015	114	62 (54,4	%)	62	0	ТКІ	Bip	phosphonates	15. (TKI+bip	0 vs 7.3 hosponates vs ΓKI)	25.2 vs 10. (TKI+biphospon TKI)	4 ates vs	
Santini, 2015	2003	661 (33%)	4	36	nd	CT vs TK (564 vs 19	I 9)	Biphosph	onates		nd		9.5
	Chen, 2016	1510	234 (15,	5%)	292	nd	nd		nd		nd	10.5		
	Zhang, 2017	2975	1560 (52,	.4%)	552	nd	СТ	Bij	phosphonates	5.5 (CT+biph	osphonates vs CT)	13.7 vs 13. (CT+biphosphon CT)	6 lates vs	

Bone metastases in EGFR+ NSCLC

EGFR mutated non-small cell lung cancer patients: More prone to development of bone and brain metastases?

L.E.L. Hendriks^{a,*}, E.F. Smit^b, B.A.H. Vosse^a, W.W. Mellema^b, D.A.M. Heideman^c, G.P. Bootsma^d, M. Westenend^e, C. Pitz^f, G.J. de Vries^g, R. Houben^h, K. Grünberg^c, M. Bendekⁱ, E.-J.M. Speelⁱ, A.-M.C. Dingemans^a

Bone metastases in EGFR+ NSCLC

Mutation status and bone/brain metastases,

	EGFR+	KRAS+	Wildtype	p-Value
	N-62	N - 65	N-62	
Bone metastases				
Imaging at 1st diagnosis of mNSCLCN (%)				
PET-CT	38 (61.3)	46 (70.8)	48 (77,4)	0.232
CT ^a	17 (27.4)	13 (20.0)	11 (17,7)	
Bone scintigraphy ^b	5 (8,1)	4(6.2)	2 (3.3)	
Missing	2 (3.2)	2 (3.0)	1(1.6)	
Bone mets N (%)				
Yes	37 (59,7)	34 (52,3)	31 (50,0)	0.528
At diagnosis	20 (54,1)	20 (70.5)	18 (58,1)	0.121
During follow up	17 (45.9)	8 (23,5)	13 (41,9)	
No	25 (40,3)	31 (47.7)	31 (50.0)	
Time to bone mets months [SD]	13.4 [±10.6]	23,3 [±19,4]	16.4 [±9.6]	0.201
SRE+ N (%)	19 (51.4)	22 (64,7)	15 (48,4)	0.361
Time to 1st SRE months [95% CI]	12.9 (5.0-20.7)	7.3 [0.0-14.9]	3.5 [0-7.7]	0,213
Post bone mets survival months [95% CI]	15.5 [10.6-20.3]	9.0 [5.2-12.9]	3.2 [0-6.9]	EGFR/KRAS 0,049
				EGFR/WT 0.004

SRE+N (%)	19 (51.4)	22 (64,7)	15 (48,4)	0,361
Time to 1st SRE months [95% CI]	12,9 [5.0-20,7]	7.3 [0.0-14.9]	3,5 [0-7,7]	0.213
Post bone mets survival months [95% CI]	15.5 [10.6-20.3]	9,0 [5,2-12,9]	3.2 [0-6.9]	EGFR/KRAS 0.049 EGFR/WT 0.004

EGFR: epidermal growth factor receptor; 95% CI – 95% confidence interval; SD – standard deviation; SRE – skeletal related event; EGFR-TKI – epidermal growth factor receptor; WBRT – whole brain radiotherapy; SRS – stereotactic radiosurgery.

^a Ct-thorax/upper abdomen,

^b When both PET-CT and bone scintigraphy were performed, patients were scored for "PET-CT".

^c Only low dose CT brain during PET-CT was scored as "none".

Hendriks L.E.L. Lung Cancer 2014

Bone metastases in EGFR+ NSCLC

Fig. 2. survival post brain metastases for EGFR+, KRAS+ and WT patients.

5. Conclusion

Incidence of metastatic bone disease and brain metastases was not different between EGFR+, KRAS+ and WT patients. Furthermore, survival post metastatic bone disease was significantly longer in the EGFR+ group, which stresses the impact of bone management especially in these patients and probably warrant more intense screening for metastatic bone disease.

Hendriks L.E.L. Lung Cancer 2014

Bone metastases in EGFR+ NSCLC

www.impactjournals.com/oncotarget/

Oncotarget, Vol. 7, No. 41

Research Paper

Bisphosphonates enhance EGFR-TKIs efficacy in advanced NSCLC patients with EGFR activating mutation: A retrospective study

Chu-Ying Huang^{1,3,*}, Li Wang^{1,4,*}, Cheng-Jun Feng^{1,*}, Ping Yu^{2,*}, Xiao-Hong Cai², Wen-Xiu Yao², Yong Xu¹, Xiao-Ke Liu¹, Wen-Jiang Zhu¹, Yan Wang^{1,5}, Jin Zhou², You Lu¹, Yong-Sheng Wang¹

Bone metastases in EGFR+ NSCLC

Conclusions: Concomitant use of bisphosphonates and EGFR-TKIs improves therapeutic efficacy and brings survival benefits to NSCLC patients with EGFR mutation and bone metastases.

Huang C.Y., Oncotarget. 2015

Bone metastases in EGFR+ NSCLC

SCIENTIFIC REPORTS

OPEN Natural History of Non-Small-Cell Lung Cancer with Bone Metastases

Received: 13 July 2015 Accepted: 18 November 2015 Published: 22 December 2015

Santini Daniele¹, Barni Sandro², Intagliata Salvatore¹, Falcone Alfredo³, Ferraù Francesco⁴, Galetta Domenico⁵, Moscetti Luca⁶, La Verde Nicla⁷, Ibrahim Toni⁸, Petrelli Fausto², Vasile Enrico³, Ginocchi Laura³, Ottaviani Davide⁹, Longo Flavia¹⁰, Ortega Cinzia¹¹, Russo Antonio¹², Badalamenti Giuseppe¹², Collovà Elena¹³, Lanzetta Gaetano¹⁴, Mansueto Giovanni¹⁵, Adamo Vincenzo¹⁶, De Marinis Filippo¹⁷, Satolli Maria Antonietta¹⁸, Cantile Flavia¹⁹, Mancuso Andrea²⁰, Tanca Francesca Maria²¹, Addeo Raffaele²², Russano Marco¹, M Sterpi¹, Pantano Francesco¹, Vincenzi Bruno¹ & Tonini Giuseppe¹ Egfr Mutation

Unknown	70,5% (459)
Known	29,5% (195)
Wild Type	74,9% (146)
Mutated	25,1% (49)

Bone metastases in EGFR+ NSCLC

- 57.5% bone M+ at diagnosis
- 57.7% SRE
- 9 months = time to bone M+
- 6 months = time to first SRE
- **9.5 m** =OS after bone M+ diagnosis
- **7 m** = OS after the first SRE

SREs	First SRE	Second SRE	Third and subsequent SREs
Radiotherapy	71.4% (262)	79.2% (76)	61.9% (13)
Pathologic fractures	16.3% (60)	9.4% (9)	19% (4)
Spinal cord compression	6% (22)	2.1%(2)	9.5% (2)
Hypercalcemia	4.1% (15)	4.2%(4)	9.5% (2)
Surgery	3.3% (12)	5.2% (5)	14.3% (3)

- **6 m** = OS if SRE as onset of bone M+
- **10 m** = OS if SRE after diagnosis of bones M+

Santini D. Sci. Rep. 2015

Bone metastases in EGFR+ NSCLC

Figure 1. IV stage at diagnosis: patients with or without bone metastases. Kaplan-Meier survival analysis.

Santini D. Sci. Rep. 2015

Effects of TKIs on osteoblast and osteoclast lineages

Aleman, Endocr Relat Cancer. 2014

RESEARCH ARTICLE

Open Access

Check for updates

Genetic profiling of primary and secondary tumors from patients with lung adenocarcinoma and bone metastases reveals targeted therapy options

- Currently, for LABM patients, there is a paucity of information on the key genetic changes present in the primary tumor and clonal variants that manifest as metastases
- Detailed genetic profiling of the primary tumors and secondary metastases showed that while the clonal metastases closely mimicked the genetic changes in the primary tumor, new driver and passenger oncogenic mutations as well as copy number variations can arise

Personalized targeted therapy options effective against both the primary tumor and secondary metastases

Genetic profiling of primary and secondary tumors from patients with lung adenocarcinoma and bone metastases reveals targeted therapy options

RESEARCH ARTICLE

Open Access

Genetic profiling of primary and secondary tumors from patients with lung adenocarcinoma and bone metastases reveals targeted therapy options

APRICE. DUNIY! 02471 00R1 APC KINDA 104 LASI-404718 80042 GAR CE FORM MPNB MPNB **MREACH** MARKED I ALLE PICTO BACKING . DIMPCAR 71,84 871 480(4 **NIOR** CTUNET 62908 (Primi Alter? .64 FODE? -0480 KONT NOAT 1621 ADGARS. POLIH POR 8031 3,50

Huang L., et al. Molecular Medicine 2020

Genetic profiling of primary and secondary tumors from patients with lung adenocarcinoma and bone metastases reveals targeted therapy options

«...the new standard of care should involve an initial comprehensive screen of the PT biopsy

together with any available BMs that are accessible for biopsy.

This approach will ensure that the treating clinician is provided with more personalized genetic information to tailor effective targeted therapy options and develop a more effective treatment regimen...»

Original Article

Consistency of genotyping data from simultaneously collected plasma circulating tumor DNA and tumor-DNA in lung cancer patients

- The overall sequencing driver genes in plasma samples relative to tumor samples:
 - ✓ 85,2% concordance
 - ✓ 87.0% sensitivity
 - ✓ 75% specificity

I The comparison of clinical characteristics of consistent and inconsistent patients.

- Concordance:
- 100% in patients with bone metastases
- 69.2% without bone metastases

The relationship between consistency and distant metastases sites.

Original Article

Consistency of genotyping data from simultaneously collected plasma circulating tumor DNA and tumor-DNA in lung cancer patients

Patients with bone metastases = greater accuracy for tissue and plasma

- Greater tumor burden and advanced tumor stage
 - \rightarrow usually accompanied by bone metastases
 - \rightarrow promising predictors of higher sensitivity

ctDNA was able to identify

75% of the identical information in driver genes,

with higher rates of concordance in lung cancer patients with **bone metastases** or *TP53* mutation-positive plasma samples.

RADIOMICA

Article Imaging Features and Patterns of Metastasis in Non-Small Cell Lung Cancer with RET Rearrangements

Representative imaging features of **RET+ NSCLC**

- A arrow: solid nodule in the peripheral right upper lobe
- **A,B arrow:** lymphangitic carcinomatosis
- **C arrow:** malignant pleural eusion
- **C arrowheads:** mediastinal and hilar lymphadenopathy
- D arrow: sclerotic osseous metastasis of the first lumbar vertebral body

🍇 cancers

Article Imaging Features and Patterns of Metastasis in Non-Small Cell Lung Cancer with RET Rearrangements

RET+ NSCLC shares several radiologic features with ALK+ and ROS1+ NSCLC

- solid density of the primary tumor
- high frequencies of lymphangitic carcinomatosis
- pleural, brain, and bone metastases

Bone metastases = sclerotic in nature

RET	ALK	ROS1	RET vs. ALK	RET vs. ROS1
(N = 22)	(N = 87)	(N = 49)	p-Value	p-Value
14 (64%)	64 (74%)	41 (84%)	0.429	0.074
4 (18%)	18 (21%)	18 (37%)	1.000	0.167
10 (45%)	35 (40%)	20 (41%)	0.809	0.797
6 (27%)	35 (40%)	21 (43%)	0.329	0.292
1 (5%)	2 (2%)	2 (4%)	0.495	1.000
17 (77%)	65 (75%)	29 (59%)	1.000	0.183
10 (45%)	41 (47%)	16 (33%)	1.000	0.425
8 (80%)	28 (68%)	9 (56%)	0.703	0.399
3 (14%)	21 (24%)	10 (20%)	0.393	0.741
7 (32%)	22 (25%)	5 (10%)	0.592	0.039
5 (23%)	17 (20%)	8 (16%)	0.769	0.524
4 (18%)	6 (7%)	7 (14%)	0.114	0.729
1 (5%)	5 (6%)	1 (2%)	1.000	0.527
	RET (N = 22) 14 (64%) 4 (18%) 10 (45%) 6 (27%) 6 (27%) 1 (5%) 17 (77%) 10 (45%) 8 (80%) 3 (14%) 7 (32%) 5 (23%) 4 (18%) 1 (5%)	RETALK $(N = 22)$ $(N = 87)$ 14 (64%)64 (74%)4 (18%)18 (21%)10 (45%)35 (40%)6 (27%)35 (40%)1 (5%)2 (2%)17 (77%)65 (75%)10 (45%)41 (47%)8 (80%)28 (68%)3 (14%)21 (24%)7 (32%)22 (25%)5 (23%)17 (20%)4 (18%)6 (7%)1 (5%)5 (6%)	RETALKROS1 $(N = 22)$ $(N = 87)$ $(N = 49)$ 14 (64%)64 (74%)41 (84%)4 (18%)18 (21%)18 (37%)10 (45%)35 (40%)20 (41%)6 (27%)35 (40%)21 (43%)1 (5%)2 (2%)2 (4%)17 (77%)65 (75%)29 (59%)10 (45%)41 (47%)16 (33%)8 (80%)28 (68%)9 (56%)3 (14%)21 (24%)10 (20%)7 (32%)22 (25%)5 (10%)5 (23%)17 (20%)8 (16%)4 (18%)6 (7%)7 (14%)1 (5%)5 (6%)1 (2%)	RETALKROS1RET vs. ALK $(N = 22)$ $(N = 87)$ $(N = 49)$ p -Value14 (64%)64 (74%)41 (84%)0.4294 (18%)18 (21%)18 (37%)1.00010 (45%)35 (40%)20 (41%)0.8096 (27%)35 (40%)21 (43%)0.3291 (5%)2 (2%)2 (4%)0.49517 (77%)65 (75%)29 (59%)1.00010 (45%)41 (47%)16 (33%)1.0008 (80%)28 (68%)9 (56%)0.7033 (14%)21 (24%)10 (20%)0.3937 (32%)22 (25%)5 (10%)0.5925 (23%)17 (20%)8 (16%)0.7694 (18%)6 (7%)7 (14%)0.1141 (5%)5 (6%)1 (2%)1.000

Original Study

Check for updates

Computed Tomography Imaging Features and Distribution of Metastases in *ROS1*-rearranged Non–Small-cell Lung Cancer

upplemental Table 1	Primary Tumor	Imaging Features	(n = 251)
---------------------	---------------	------------------	-----------

Primary Tumor			Mutation	P Value		
Features	All (n = 251)	<i>ROS1</i> (n = 48)	<i>ALK</i> (n = 86)	<i>EGFR</i> (n = 117)	ROS1 vs. ALK	ROS1 vs. EGFR
Bone					.05	.17
Yes	106 (41)	16 (30)	41 (47)	49 (42)		
No	151 (59)	37 (70)	46 (53)	68 (58)		
Bone metastasis type					.10	<.01
None	151 (59)	37 (70)	46 (53)	68 (58)		
Lytic	62 (24)	7 (13)	13 (15)	42 (36)		

Computed Tomography Imaging Features and Distribution of Metastases

in ROS1-rearranged Non–Small-cell Lung Cancer

ROS1-rearranged Lung Adenocarcinoma and Sclerotic Osseous Metastases ((C) Spine and (D) Left Iliac Bone) The most common sites of metastasis in **ROS1-rearranged NSCLC** in our cohort were the lungs (42%), pleura (40%), and **bones (30%).**

Sclerotic (or osteoblastic) bone metastases were more common in ROS1- rearranged and ALK rearranged NSCLC compared with EGFR mutant NSCLC.

Digumarthy S.R., et al. Clinical Lung Cancer 2020

Real-world treatment patterns and outcomes in patients (pts) with advanced,

ALK+ non-small cell lung cancer (NSCLC) in Europe

Table: 1340P							
Baseline characteristics	Alectinib (N = 70)	Crizotinib (N=229)					
Median Age	62	63					
Female Sex (%)	40%	46%					
Overall median ToT in days (d)	360 d	470 d					
CNS metastasis at diagnosis (%;median ToT)	21% (454 days)	14% (518 d)					
Site of metastatic progression after first-line							
CNS (%; median ToT)	13% (243 d)	30% (455 d)					
Visceral (%; median ToT)	66% (394 d)	48% (441 d)					
Bone (%; median ToT)	30% (365 d)	27% (319 d)					

Osteoblastic (or sclerotic)

- **Deposition** of new bone
- Prostate cancer, carcinoid, SCLC, HL or medulloblastoma
- New bone formation is not necessarily preceded by bone resorption
- Transforming growth factor, bone morphogenic proteins (BMP) and endothelin-1 are associated with osteoblast generation.
- PSA, can cleave PTHrP, allowing the osteoblastic reaction predominate by decreasing bone reabsorption
- Runx-2 \rightarrow osteoblast differentiation

Iwamura M, *Urology*1996 Yang X, *Trends Mol Med* 2002 Coleman R, *Semin Oncol* 2001

Clinical case

- 18-year-old man
- NSCL with rearrangement of ALK gene at chromosome 2p23
- Stage IV with brain and bone metastatic
- Alectinib as first line of treatment

Clinical case

- 8 months of treatment with alectinib
- Resolution of bone lesions

The present case show

rapid and good response to alectinib

in metastatic ALK-positive

non-small cell lung carcinoma

Clinical case

- 72-year-old female never-smoker
- stage IV EGFR+ lung ADK
- primary lesion: right upper lobe, 2.9 cm greatest diameter
- TNM: cT1bN3M1b: hilar, mediastinal and supraclavicular lymph nodes and distant metastases in liver
- This patient was started on first line TKI and seemingly developed new bone metastases under this treatment

Clinical case

Numerous new blastic bone lesions in the spine, ribs and sternum...

Misinterpretation of these findings as new metastases would classify this patient as progressive cancer disease

J Belg Soc Radiol. 2020

Clinical case

- As there was a remarkable discrepancy between the partial response seen in the primary tumor and non-osseous metastatic locations, the possibility of a bone flare phenomenon was considered...
- In this case report, we demonstrate that new bony lesions are not always synonymous with disease progression...

- Osteoblastic bone flaring is a phenomenon whereby new or more prominent osteoblastic bony lesions arise in the presence of a clear therapeutic response in other tumor sites
 - Caused by increased osteoblastic activity
 - Representing healing of the bone metastases
 - Sign of therapeutic efficacy
 - Mechanism of osteoblastic flaring
 - direct effect of the EGFR TKI on bone metabolism
 - innate healing reaction upon reaching SD/PR by successful treatment

Osteoblastic ???

Osteolitic

- Destruction of normal bone
- Multiple myeloma (MM), renal cell carcinoma, melanoma, non-small cell lung cancer, non-hodgkin lymphoma, thyroid cancer or langerhans-cell histiocytosis
- Bone destruction by osteoclasts or compression of vasculature \rightarrow ischaemia
- **PTHrP**: major role in the development of osteolytic lesions
- Bone **microenvironment** induces cancer cells to express PTHrP or cells that metastasize to bone have an intrinsic higher PTHrP expression?
- **RANKL**: a critical role in the formation of osteoclasts

Selvaggi G, *Clin Rev Oncol Hematol*Taube T, *Bone*Southby J, *Cancer Res*Kohno N, *Surg Today*Dougall W, *Genes Dev*

Osteoporosis

The **NSCLC** patient is often an **elderly** patient

Patients with NSCLC EGFR+ are often women

ISTAT

...sí díchíara malato dí **osteoporosí** íl 4,7% della popolazíone totale e íl 17,5% delle persone con oltre sessantacínque anní... **Female and elderly** patients often suffer from **osteoporosis**

Osteoporotic lesions can often be confused with osteolytic metastatic lesions

Osteolitic ???

Bone metastases in NSCLC

- About 80% of patients with bone M+ will experience significant pain and a reduction of QoL
- SREs → pain, decreased quality of life, declines in physical, functional and emotional well being and negatively affect survival
- Over 60% of patients with BM will develop skeletal-related events (SREs)

Kuchuk M, et al; Lung Cancer. 2015;89(2):197-202.

Oligoprogression and need for RT

Clinical Investigation

Pattern of Recurrence Analysis in Metastatic EGFR-Mutant NSCLC Treated with Osimertinib: Implications for Consolidative Stereotactic Body Radiation Therapy

International Journal of Radiation Oncology biology • physics

www.redjournal.org

The majority of osimertinib-treated patients developed PD within the persistent lesions in initially involved sites. Patients with stage T1-2 before initiating osimertinib were particularly likely to become candidates for consolidative SBRT. The addition of SBRT to residual sites of disease at maximal osimertinib response may prolong time to progression in subsets of patients with an oligoresidual disease state.

Guo et al, Int J Radiation Oncol Biol 2020

Oligoprogression and need for RT

Lung Cancer 130 (2019) 149-155

	Contents lists available at ScienceDirect	
	Lung Cancer	lungcances
ELSEVIER	journal homepage: www.elsevier.com/locate/lungcan	

Patterns of progression on osimertinib in EGFR T790M positive NSCLC: A Swiss cohort study

In patients with acquired osimertinib resistance, we observed a high rate (73%) of oligo-PD. Although OS of patients with oligo- versus systemic PD were similar, outcomes of patients with oligo-PD who received local ablative therapy were favorable with the majority continuing osimertinib for an extended period of time in addition to local therapy, supporting the concept of continuing osimertinib beyond progression in combination with LAT of progressing lesions. Prospective trials to confirm the role of LAT in patients with oligo-PD on osimertinib are warranted and currently ongoing (ETOP HALT). Patients with previous CNS metastases may benefit from regular radiological monitoring for progression.

Oligoprogression and need for RT

Clinical and Translational Oncology https://doi.org/10.1007/s12094-019-02193-w

RESEARCH ARTICLE

Osimertinib beyond disease progression in T790M EGFR-positive NSCLC patients: a multicenter study of clinicians' attitudes

Bone metastases in NSCLC and SREs

- ✓ Radiotherapy
- ✓ Bone surgery
- ✓ Pathological fractures
- ✓ Spinal cord compression
- ✓ Hypercalcemia

- ✓ Bone surgery
- ✓ Pathological fractures
- ✓ Spinal cord compression
- ✓ Hypercalcemia

RT = *SREs* ???

TAKE HOME MESSAG

Headless Dancer ???